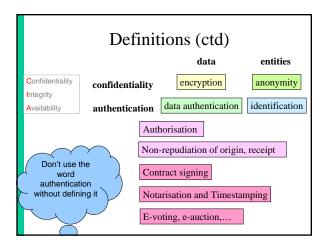
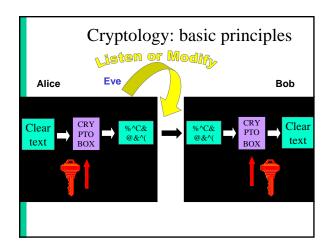


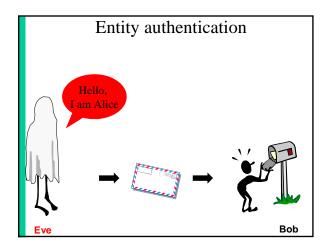
Entity authentication and symmetric key establishment

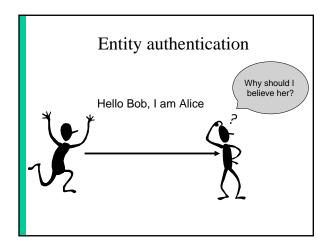
Prof. Bart Preneel COSIC

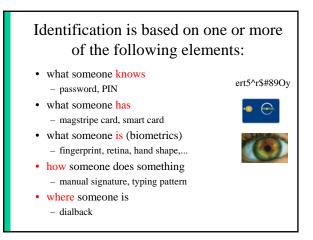

Bart.Preneel(at)esatDOTkuleuven.be http://homes.esat.kuleuven.be/~preneel February 2007

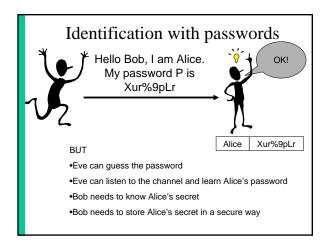

© Bart Preneel. All rights reserved

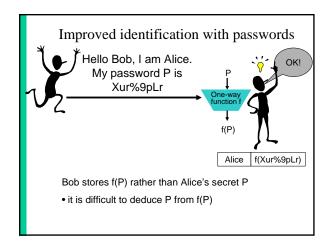
Outline

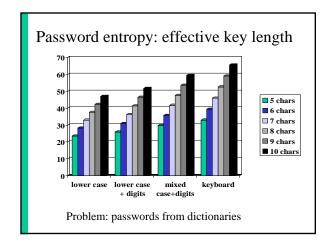

- 1. Cryptology: protocols
 - identification/entity authentication
 - key establishment
- 2. Public Key Infrastructures
- 3. Secure Networking protocols
 - Internet Security: email, web, IPSEC, SSL
- 4. How to use cryptography well
- 5. New developments in cryptology

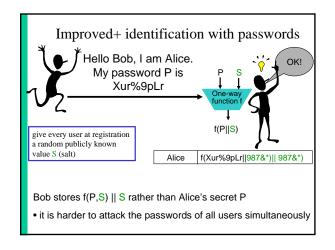


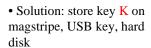



Identification


- · the problem
- · passwords
- challenge response with symmetric key and MAC (symmetric tokens)
- challenge response with public key (signatures, ZK)
- biometry
- · symmetric key establishment and Kerberos
- · public key establishment



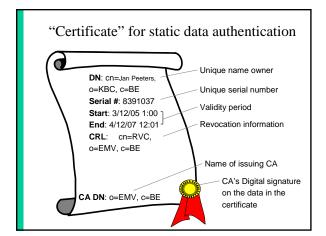




Example: UNIX

- Function f() = DES applied 25 times to the all zero plaintext DES_K(DES_K(...DES_K(000..0))) with as key the password (8 7-bit characters)
- Salt: 12-bit modification to DES
- etc/passwd public
- PC: 1 million passwords/second
- But time-memory tradeoff...

Problem: human memory is limited


• Stops guessing attacks

But this does not solve the other problems related to passwords

And now you identify the card, not the user....

Improvement: Static Data Authentication

- Replace K by a signature of a third party CA (Certification Authority) on Alice's name: SigSK_{CA} (Alice) = special certificate
- Advantage: can be verified using a public string PK_{CA}
- Advantage: can only be generated by CA
- Disadvantage: signature = 40..128 bytes
- Disadvantage: can still be copied/intercepted

Entity authentication with symmetric token

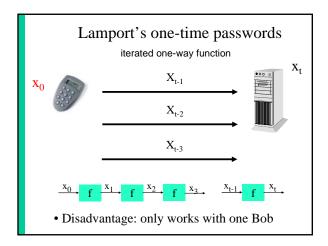
Challenge response protocol random number r

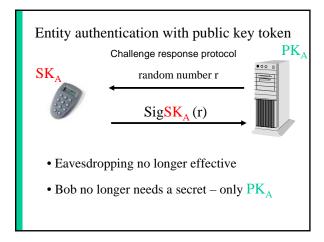
or xyz henk

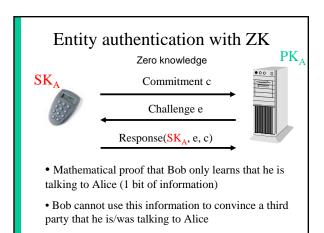
 $MAC_{\mathbf{K}}(\mathbf{r})$

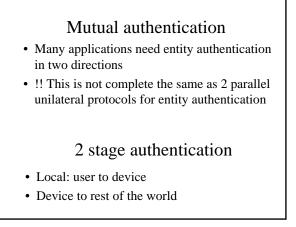
- Eavesdropping no longer effective
- Bob still needs secret key K

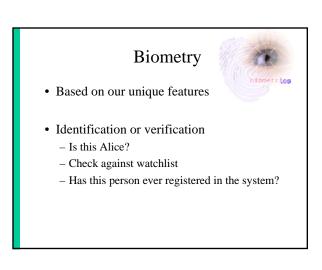
Entity authentication with symmetric token With implicit challenge from clock

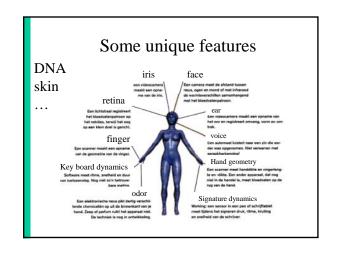


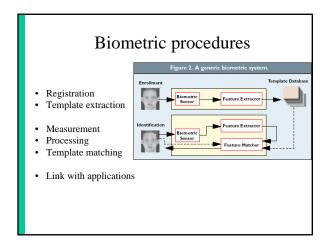


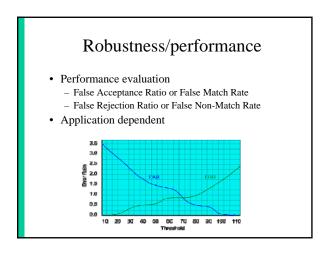

MAC_K(time)

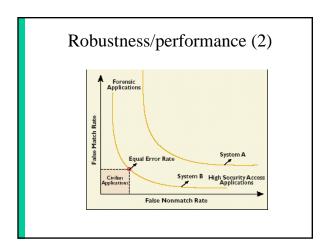


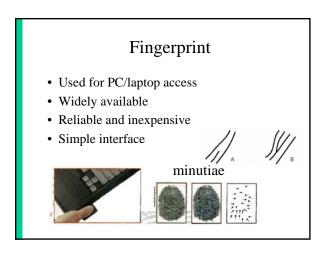

- Eavesdropping no longer effective
- Bob still needs secret key K
- · resynchronization mechanism needed

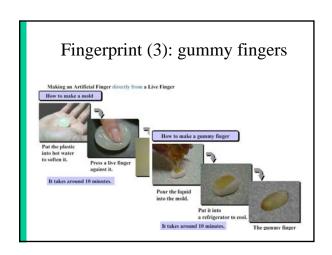












Fingerprint (2)

- Small sensor
- Small template (100 bytes)
- · Commercially available
 - Optical/thermical/capacitive
 - Liveness detection
- Problems for some ethnic groups and some professions
- Connotation with crime

Hand geometry

- Flexible performance tuning
- Mostly 3D geometry
- Example: 1996 Olympics

Voice recognition

- · Speech processing technology well developed
- Can be used at a distance
- Can use microphone of our gsm
- But tools to spoof exist as well
- Typical applications: complement PIN for mobile or domotica

Iris Scan

- · No contact and fast
- Conventional CCD camera
- 200 parameters
- · Template: 512 bytes
- · All etnic groups
- · Reveals health status

Retina scan

- · Stable and unique pattern of blood vessels
- · Invasive
- · High security

Manual signature

- Measure distance, speed, accelerations, pressure
- Familiar
- · Easy to use
- Template needs continuous update
- · Technology not fully mature

Facial recognition

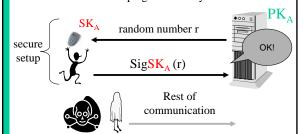
- · User friendly
- · No cooperation needed
- · Reliability limited
- · Robustness issues - Lighting conditions

 - Glasses/hair/beard/...

Comparison

Feature	Uniqueness	Permanent	Performance	Acceptability	Spoofing
Facial	Low	Average	Low	High	Low
Fingerprint	High	High	High	Average	High
Hand geometry	Average	Average	Average	Average	Average
Iris	High	High	High	Low	High
Retina	High	Average	High	Low	High
Signature	Low	Low	Low	High	Low
Voice	Low	Low	Low	High	Low

Biometry: pros and cons


- · Real person
- · User friendly
- Cannot be forwarded
- · Little effort for user
- Privacy (medical)
- Intrusive?
- · Cannot be replaced
- Risk for physical attacks
- Hygiene
- Does not work everyone, e.g., people with disabilities
- Reliability
- Secure implementation: derive key in a secure way from the biometric
- No cryptographic key

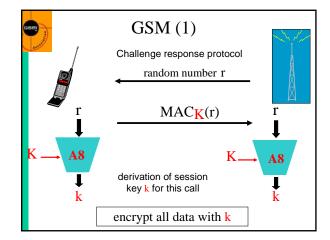
Location-based authentication

- Dial-back: can be defeated using fake dial tone
- IP addresses and MAC addresses can be spoofed
- Mobile/wireless communications: operator knows access point, but how to convince others?
- Trusted GPS?

Limitations of entity authentication

- · Establish who someone is
- Establish that this person is active
- But what about keeping authenticity alive?

Solution


- Authenticated key agreement
- Run a mutual entity authentication protocol
- · Establish a key
- Encrypt and authenticate all information exchanged using this key

Key establishment

- The problem
- How to establish secret keys using secret keys?
- How to establish secret keys using public keys?
 - Diffie-Hellman and STS
- How to distribute public keys? (PKI)

Key establishment: the problem

- Cryptology makes it easier to secure information, by replacing the security of information by the security of keys
- The main problem is how to establish these keys
 - 95% of the difficulty
 - integrate with application
 - if possible transparent to end users

GSM (2)

- SIM card with long term secret key K (128 bits)
- · secret algorithms
 - A3: MAC algorithm
 - A8: key derivation algorithm
 - A5.1/A5.2: encryption algorithm
- anonimity: IMSI (International Mobile Subscriber Identity) replaced by TIMSI (temporary IMSI)
 - the next TIMSI is sent (encrypted) during the call set-up

Point-to point symmetric key distribution

• Before: Alice and Bob share long term secret K_{AB}

generate session key k $EK_{AB}(k \mid | time \mid | Bob)$ $Ek (time \mid | Alice \mid | hello)$ extract k

- After: Alice and Bob share a short term key k
 - which they can use to protect a specific interaction
 - which can be thrown away at the end of the session
- · Alice and Bob have also authenticated each other

Symmetric key distribution with 3rd party

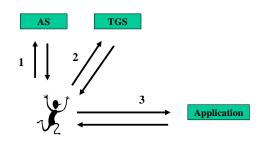
- Before (KDC=Key Distribution Center)
 - Alice shares a long term secret with KDC: K_A

- Bob shares long term secret with KDC: K_B generate

session key kneed

key

for


Bob $E K_A(k) // E K_B(k)$ $E K_B(k)$

Symmetric key distribution with 3rd party(2)

- After: Alice and Bob share a short term key k
- Need to trust third party!
- Single point of failure in system

Kerberos/Single Sign On (SSO)

• Alice uses her password only once per day

Kerberos/Single Sign On (2)

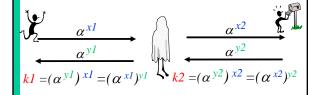
- Step 1: Alice gets a "day key" K_A from AS (Authentication Server)
 - based on a Alice's password (long term secret)
 - $-K_A$ is stored on Alice's machine and deleted in the evening
- Step 2: Alice uses K_A to get application keys
 k_i from TGS (Ticket Granting Server)
- Step 3: Alice can talk securely to applications (printer, file server) using application keys k_i

A public-key distribution protocol: Diffie-Hellman

 Before: Alice and Bob have never met and share no secrets; they know a public system parameter α

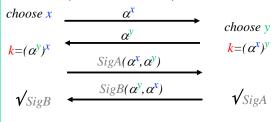
generate x α^x generate y compute α^y compute α^y compute $k = (\alpha^y)^x$ compute $k = (\alpha^x)^y$

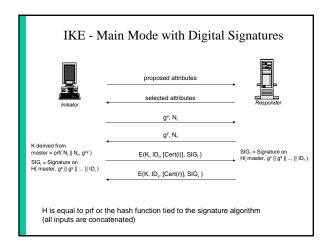
- After: Alice and Bob share a short term key k
 - Eve cannot compute k: in several mathematical structures it is hard to derive x from α^x (this is known as the discrete logarithm problem)

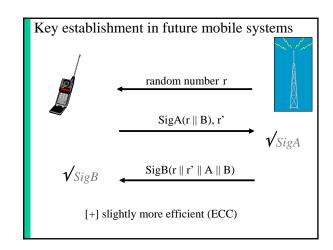

Diffie-Hellman (continued)

generate x
$$\alpha^x$$
 generate y compute α^y compute $k=(\alpha^y)^x$ compute $k=(\alpha^x)^y$

- BUT: How does Alice know that she shares this secret key k with Bob?
- Answer: Alice has no idea at all about who the other person is! The same holds for Bob.


Meet-in-the middle attack


- Eve shares a key k1 with Alice and a key k2 with Bob
- · Requires active attack



Station to Station protocol (STS)

- The problem can be fixed by adding digital signatures
- This protocol plays a very important role on the Internet (under different names)

Key transport using RSA

generate k $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$

- How does Bob know that **k** is a fresh key?
- How does Bob know that this key k is coming from Alice?
- How does Alice know that Bob has received the key
 k and that Bob is present (entity authentication)?

Key transport using RSA (2)

generate k $E_{PKB}(k) \xrightarrow{E_{PKB}(k \parallel t_A)} decrypt using SKB to obtain k$

- Freshness is solved with a timestamp $\boldsymbol{t}_{\boldsymbol{A}}$

Key transport using RSA (3)

generate k $Sig_{SKA} (E_{PKB}(k \parallel t_A)) \xrightarrow{SKB} and verify using PKA$

- · Alice authenticates by signing the message
- There are still attacks (signature stripping...)

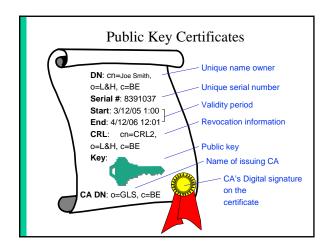
Key transport using RSA (4): X.509

generate <mark>k</mark>

 $Sig_{SKA} (B/| t_A |/ E_{PKB}(A |/ k)) \atop \parallel t_A |/ E_{PKB}(A |/ k)$ $\longrightarrow b$ decrypt usingSKB andverify usingPKA

Mutual: B can return a similar message including part of the first message

Problem (compared to D-H/STS): lack of **forward secrecy**

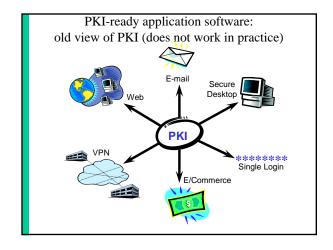

If the long term key *SKB* of Bob leaks, all past session keys can be recovered!

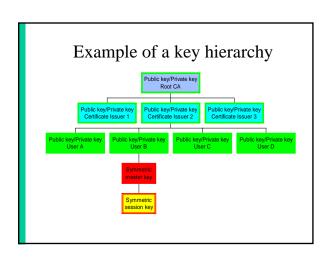
Distribution of public keys

- · How do you know whose public key you have?
- · Where do you get public keys?
- How do you trust public keys?
- What should you do if your private key is compromised?

reduce protection of public key of many users to knowledge of a single public key of a Certification Authority (CA)

digital certificates & Public Key Infrastructure (PKI)




Certificate Revocation List Unique name of CRL DN: cn=CRL2, o=ACME, c=US Period of validity Start:1/06/06 1:01 End: 30/06/06 1:01 Serial numbers of revoked certificates Revoked: 191231 123832 Name of issuing CA 923756 CA's digital signature on the CA DN: o=GLS, c=BE CRL

Essential PKI Components

- · Certification Authority
- · Revocation system
- Certificate repository ("directory")
- Key backup and recovery system
- Support for non-repudiation
- · Automatic key update
- · Management of key histories
- Cross-certification
- · PKI-ready application software

64

